Vai al contenuto principale
Oggetto:
Oggetto:

METODOLOGIE CHIMICO FISICHE DI INVESTIGAZIONE CLINICA E FORENSE

Oggetto:

Physical-Chemical Methods for Clinical and Forensic Investigations.

Oggetto:

Anno accademico 2023/2024

Codice attività didattica
MFN1185
Docenti
Francesca Carla Bonino (Titolare)
Giuliana Magnacca (Titolare)
Gloria Berlier (Titolare)
Corso di studio
Corso di laurea magistrale in Chimica Clinica Forense e dello Sport D.M. 270
Anno
1° anno
Periodo
Da definire
Tipologia
Caratterizzante
Crediti/Valenza
9
SSD attività didattica
CHIM/02 - chimica fisica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Prerequisiti

-conoscenza dei fenomeni relativi all'interazione elettroni accelerati-materia
-conoscenza delle caratteristiche e proprietà di campi (magnetici, elettrici) e di onde (in particolare, elettromagnetiche)
-conoscenze di struttura della materia e delle caratteristiche dei legami chimici
-conoscenza dei fenomeni relativi all'interazione radiazione elettromagnetica-materia (in particolare, sistemi molecolari)
-conoscenza della trattazione quanto-meccanica dei fenomeni spettroscopici

Knowledge background requested:
- structure of matter; types and features of chemical bonds and of intermolecular interactions
- phenomena relevant in the electron-matter interaction
- nature and properties of electric and magnetic forces and fields, waves, and in particular of the electromagnetic type
- phenomena relevant in the electromagnetic waves-matter interactions
- quantum-mechanics description of spectroscopic phenomena
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il raggiungimento della finalità principale prevede il perseguimento dei seguenti obiettivi:

1. acquisire una solida padronanza della conoscenza dei principi fisici e chimico-fisici alla base della generazione dei segnali utilizzati in microscopia elettronica e nelle spettroscopie elettroniche e vibrazionali

2. acquisire le conoscenze e gli elementi tipici di percorsi deduttivi ed indittivi utili per l'interpretazione critica dei risultati

3. conseguire la capacità di progettare analisi di microscopia elettronica e di spettroscopica elettronica e vibrazionale di campioni di interesse clinico e/o forense tenendo conto delle specificità degli analiti, delle complessità delle matrici, e del tipo di informazione (ad es. qualitativa e/o quantitativa) richiesta

4. conseguire la capacità di integrare l'utilizzo di diverse tecniche di microscopia elettronica e di spettroscopia elettronica e vibrazionale per ottenere informazioni complementari sugli analiti

 

The objectives the students should target in this course are based on the following achievements:

1. deep knowledge of the physical and physical-chemical principles at the basis of the generation of signals exploited in electron microscopy and in vibrational and electronic spectroscopies

2. good capability in crytical understanding scientific texts

3. good capability in designing investigation of different materials by
electron microscopies and vibrational and electronic spectroscopies, on
the basis on their composition and structure, possible constrains related to
limited amounts, types of outputs requested (identification;
quantification)

4. good capability in the complementary use of the methodology
indicated above

Oggetto:

Risultati dell'apprendimento attesi

Alla fine del corso gli/le student* saranno in grado di

- padroneggiare le principali modalità di preparazione dei campioni per misure di microscopia elettronica (SEM e TEM)

- gestire la preparazione e manipolazione dei campioni in abbinamento alle diverse modalità di acquisizioni di spettri elettronici o vibrazionali

- progettare analisi (e quindi individuare la metodologia più adatta) tramite le metodologie indicate di campioni di interesse clinico e/o forense tenendo conto delle specificità degli analiti, delle complessità delle matrici, e del tipo di informazione (ad es. qualitativa e/o quantitativa) richiesta

- interpretare dati ottenuti tramite tali metodologie

 

At the end of the course students will be able to

- handling samples for scanning and transmission electron microscopy measurements

- handling the main methos and sample preparation for electronic and vibrational (noth IR and Raman) spectroscopic measurements

-  design proper electron microscopy and/or spectroscopic measurements for the investigation of samples of interest in clinical and forensic chemistry, tacking into account the peculiar features of these samples (e.g, complexity of the matrix), and the specific target(s) to be pursued (identification/quantification)

-  analyse data resulting from the methods indicated above

 

Oggetto:

Programma

Le lezioni dedicate alle microscopie elettroniche (Prof. Magnacca) prevedono una parte introduttiva sul concetto di ingrandimento e risoluzione nelle modalità di acquisizione di segnali in trasmissione e in scansione. A seguire, vengono affrontati gli aspetti fisici di base delle proprietà dei fasci di elettroni accelerati e della natura e caratteristiche della loro interazione con la materia. Si passa quindi all'applicazione di queste conoscenze alla formazione dei vari tipi di contrasto, con i relativi contenuti informativi (inclusa l'analisi chimica da raggi X caratteristici), alla base della formazione delle immagini di microscopia elettronica in trasmissione. Parte integrante di questi argomenti sono anche gli aspetti costitutivi e funzionali delle varie parti che compongono un microscopio elettronico in trasmissione (TEM). Segue l'applicazione di queste conoscenze all'analisi (anche con esercitazioni numeriche guidate) di immagini esemplificative di varie tipologie di materiali, e la presentazione delle metodiche di preparazione dei campioni. La stessa tipologia di percorso conoscitivo viene proposta per la microscopia elettronica a scansione (SEM). L'esercitazione (tutor: Magnacca, Bonino) sarà svolto in aula, utilizzando materiale didattico interattivo relativo all'esecuzione di misure SEM e TEM.

Per quanto riguarda i metodi di spettroscopia elettronica e di spettroscopia vibrazionale (Prof. Berlier e Bonino) gli argomenti oggetto delle lezioni frontali riguarderanno aspetti di conoscenza dei principi fisici e chimico fisici che sono alla base della progettazione di misure UV-Vis-NIR, sia di assorbimento che di emissione, ed IR e Raman, della interpretazione dei risultati (natura delle transizioni, effetto delle interazioni intra- ed intermolecolari, relazioni tra seganli spettroscopici e struttura molecolare), dei principi di misura nelle varie modalità utili per lo studio di campioni di interesse clinico o forense (spettroscopia elettronica di assorbimento: misure in trasmissione ed in riflettanza diffusa; spettroscopia elettronica in emissione: misure in stato stazionario e risolte nel tempo; spettroscopia IR: misure in trasmissione, ATR, riflettanza diffusa; spettroscopia Raman: misure convenzionali e in modalità confocale). Nel corso delle lezioni verranno svolti esempi di interpretazione di spettri, e saranno presentati e discussi casi di utilizzo delle spettroscopie ottiche in riferimento ad articoli scientifici tratti dalla letteratura degli ambiti di riferimento. Le esercitazioni in laboratorio (tutor:  Bonino, Berlier) riguarderanno l'acquisizione di spettri elettronici (sia di assorbimento che di fotoluminescenza) e IR e Raman di campioni solidi e liquidi scelti in modo di dare occasione di utilizzare varie modalità di acquisizione degli spettri e di applicare quanto trattato a lezione per l'interpretazione dei risultati.

The course will deal with electron microscopy (both in transmission and in the scanning mode; I semester, prof. Magnacca) and optical spectroscopies (electronic, and vibrational (IR, Raman), Prof. Berlier and Bonino; I and II semester). Lessons will be followed by practical works. As for electron microscopy, lesson will start from the different concepts of magnification and resolution for the acquisition of signals in the transmission or scanning mode. Then, the physical features of beams of accelerated electrons will be discussed, as well as nature and features of their interaction with matter. Next, these physical insights will be used to understand the origin and the informative content (included chemical analysis by collection of characteristic X-ray emission) of the various type of contrast forming TEM images. These topics will be treated in close connection with both engineering and functional aspects of the various parts forming a TEM instrument and methods for sample preparation. Essentially the same path will be followed for scanning electron microscopy. In the exercise, students will learn the procedures for the acquisition of SEM and TEM images (tutors: Magnacca, Bonino). 

The second part of the course is devoted to the physical and physical-chemical principles at the basis of a rational and effective design of electronic and vibrational spectroscopic measurements. For electronic spectroscopy, both the absorption and emission modes (the latter in both steady state and time resolved variants) will be considered. As for vibrational spectroscopy, IR [in the transmission, attenuated total reflection (ATR), and diffuse reflection (DRIFT) modes] and Raman methods will be treated. Spectra interpretation and extraction of informative contents will be will be discussed, also on the basis of case-studies from the clinical and forensic literature. As an introduction the laboratory activities, the engineering and functional features of common types of spectrophotometers will be treated. During practical works, students will collect IR, Raman and electronic spectra of solid and liquid samples, representative of classes of samples of interest for clinical and forensic chemists (tutors: Bonino and Berlier).

Oggetto:

Modalità di insegnamento

I semestre, Microscopie Elettroniche (16 ore Magnacca), Spettroscopie Ottiche: (12 ore Berlier) e esercitazione SEM/TEM (12 ore Magnacca e Bonino)

II semestre, Spettroscopie Ottiche:  (8 ore Berlier, 20 ore Bonino) e laboratorio 1 CFU (16 ore Bonino e Berlier). 

Frequenza

Non obbligatoria per le lezioni, obbligatoria per i laboratori. Si veda l'articolo 10 del Regolamento del Corso di Laurea Magistrale.

Il materiale didattico è a disposizione sulla piattaforma Moodle

I semester Electronic Microscopies: 16 hours Magnacca, Optical spectroscopies (12 hours Berlier) and SEM/TEM excercise (12 hours Magnacca and Bonino)

II semester Optical spectroscopies: lessons (8 hours Berlier and 20 hours Bonino) and laboratory (16 hours Bonino and Berlier)

Lessons attendance is not compulsory, whereas it is for practical laboratory work. See article 10 of the Regulations of this Laurea Magistrale 

Teaching material is available on Moodle.

Oggetto:

Modalità di verifica dell'apprendimento

In presenza, salvo aggiornamenti sui provvedimenti adottati da UniTo reperibili sul portale di Ateneo alla voce "Disposizioni per chi studia e lavora in UniTo" https://www.unito.it/ateneo/gli-speciali/coronavirus-aggiornamenti-la-comunita-universitaria/disposizioni-chi-studia-e"

In sede di esame verranno valutate le conoscenze acquisite ed il livello della loro comprensione in relazione al programma dell'insegnamento. Rientrano nella valutazione anche conoscenza e comprensione degli aspetti di chimica di base inerenti gli argomenti dell'insegnamento a cui si debba fare riferimento in sede di esame, così come l'utilizzo di un lessico appropriato.

Modalità e forma degli esami

A partire della fine del primo semestre si potrà sostenere l'esonero di microscopia elettronica negli appelli predisposti.

A partire della fine del secondo semestre si potrà sostenere l'esame relativo alle spettroscopie ottiche.

Il voto finale espresso in trentesimi risulta dalla somma dei seguenti punteggi:
- parte di microscopia elettronica: fino a 10 punti
- parte di spettroscopia ottica: fino a 20 punti

In presence, with the exceptions available at the link "Disposizioni per chi studia e lavora in UniTo"https://www.unito.it/ateneo/gli-speciali/coronavirus-aggiornamenti-la-comunita-universitaria/disposizioni-chi-studia-eopen_in_newopen_in_new

The exam is devoted to the assessment of the knowledge, and related understanding, of the program attained by the students. In addition, also knowledge and understanding of basic knowledge in Chemistry which should be necessary consider will be evaluated, as well as the use of a proper  scientific/technical language.

Modality and forms of the exams

From the end of the first semester students will be able to give the test on electronic microscopies at the official rounds

From the end of the second semester students will be able to take the exam related to optical spectroscopy.

The final mark is expressed in thirtieths, and will be computed as follows:

Part on Electron Microscopy: weight in the final grade = 10/30

Part on Optical spectroscopies: weight in the final grade = 20/30

 

Testi consigliati e bibliografia

Oggetto:

Il materiale didattico presentato a lezione è disponibile sul sito internet.

I testi base a cui fare riferimento (tutti disponibili presso i docenti) sono:

D.B. Williams, C.B. Carter, Transmission Electron Microscopy: a textbook for Materials Science, Springer, 2009

J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, Springer, 2003

J.M. Chalmers, P.R. Griffiths, Handbook of vibrational spectroscopy, Wiley, 2002, Vol. 4 e 5

N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, seconda edizione, 1975

J. M. Chalmers, H. G. M. Edwards, M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science, Wiley, 2012

R. Saferstein, Forensic Science Handbook, Prentice Hall, 1993, Vol. 3

N.J. Turro, Modern Molecular Photochemistry, University Science Books, 1991

C.N.R. Rao, Ultra-Violet and Visible Spectroscopy, Butterworths, terza edizione, 1966

J.R. Lakowitz, Principles of fluorescence spectroscopy, Plenum, 2000

Reference material is available at the course website.

Suggested textbooks (all available from the teachers):

D.B. Williams, C.B. Carter, Transmission Electron Microscopy: a textbook for Materials Science, Springer, 2009

J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, Springer, 2003

J.M. Chalmers, P.R. Griffiths, Handbook of vibrational spectroscopy, Wiley, 2002, Vol. 4 e 5

N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, second edition, 1975

J. M. Chalmers, H. G. M. Edwards, M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science, Wiley, 2012

R. Saferstein, Forensic Science Handbook, Prentice Hall, 1993, Vol. 3

N.J. Turro, Modern Molecular Photochemistry, University Science Books, 1991

C.N.R. Rao, Ultra-Violet and Visible Spectroscopy, Butterworths, third edition, 1966

J.R. Lakowitz, Principles of fluorescence spectroscopy, Plenum, 2000



Oggetto:

Note

Gli/le studenti/esse con DSA o disabilità, sono pregati di prendere visione delle modalità di supporto (https://www.unito.it/servizi/lo-studio/studenti-e-studentesse-con-disabilita e di accoglienza (https://www.unito.it/accoglienza-studenti-con-disabilita-e-dsa) di Ateneo, ed in particolare delle procedure necessarie per il supporto in sede d’esame  (https://www.unito.it/servizi/lo-studio/studenti-e-studentesse-con-disturbi-specifici-di-apprendimento-dsa/supporto).

Registrazione
  • Aperta
    Apertura registrazione
    15/09/2023 alle ore 00:00
    Chiusura registrazione
    01/09/2024 alle ore 00:00
    Oggetto:
    Ultimo aggiornamento: 28/02/2024 18:46
    Non cliccare qui!